Pour un Web frugal ?

Sites lourds, sites lents, pages web obèses qui exigent pour être consultées dans un délai raisonnable une carte graphique performante, un processeur rapide et autant que possible une connexion par fibre optique… tel est le quotidien de l’internaute ordinaire.

Nul besoin de remonter aux débuts du Web pour comparer : c’est d’une année sur l’autre que la taille moyenne des pages web s’accroît désormais de façon significative.

Quant à la consommation en énergie de notre vie en ligne, elle prend des proportions qui inquiètent à juste titre : des lointains datacenters aux hochets numériques dont nous aimons nous entourer, il y a de quoi  se poser des questions sur la nocivité environnementale de nos usages collectifs et individuels.

Bien sûr, les solutions économes à l’échelle de chacun sont peut-être dérisoires au regard des gigantesques gaspillages d’un système consumériste insatiable et énergivore.

Cependant nous vous invitons à prendre en considération l’expérience de l’équipe barcelonaise de Low-Tech Magazine dont nous avons traduit pour vous un article. Un peu comme l’association Framasoft l’avait fait en ouverture de la campagne dégooglisons… en se dégooglisant elle-même, les personnes de Low-tech Magazine ont fait de leur mieux pour appliquer à leur propre site les principes de frugalité qu’elles défendent : ce ne sont plus seulement les logiciels mais aussi les matériels qui ont fait l’objet d’une cure d’amaigrissement au régime solaire.

En espérant que ça donnera des idées à tous les bidouilleurs…

article original : How to build a Low-tech website
Traduction Framalang : Khrys, Mika, Bidouille, Penguin, Eclipse, Barbara, Mannik, jums, Mary, Cyrilus, goofy, simon, xi, Lumi, Suzy + 2 auteurs anonymes

Comment créer un site web basse technologie

Low-tech Magazine a été créé en 2007 et n’a que peu changé depuis. Comme une refonte du site commençait à être vraiment nécessaire, et comme nous essayons de mettre en œuvre ce que nous prônons, nous avons décidé de mettre en place une version de Low Tech Magazine en basse technologie, auto-hébergée et alimentée par de l’énergie solaire. Le nouveau blog est conçu pour réduire radicalement la consommation d’énergie associée à l’accès à notre contenu.

le hardware qui faisait tourner la première version du site allégé
Premier prototype du serveur alimenté à l’énergie solaire sur lequel tourne le nouveau site.


* Voir cet article (en anglais) dans une version frugale donc moins énergivore


Pourquoi un site web basse technologie ?

On nous avait dit qu’Internet permettrait de « dématérialiser » la société et réduire la consommation d’énergie. Contrairement à cette projection, Internet est en fait lui-même devenu un gros consommateur d’énergie de plus en plus vorace. Selon les dernières estimations, le réseau tout entier représente 10 % de la consommation mondiale d’électricité et la quantité de données échangées double tous les deux ans.

Pour éviter les conséquences négatives d’une consommation énergivore, les énergies renouvelables seraient un moyen de diminuer les émissions des centres de données. Par exemple, le rapport annuel ClickClean de Greenpeace classe les grandes entreprises liées à Internet en fonction de leur consommation d’énergies renouvelables.

Cependant, faire fonctionner des centres de données avec des sources d’énergie renouvelables ne suffit pas à compenser la consommation d’énergie croissante d’Internet. Pour commencer, Internet utilise déjà plus d’énergie que l’ensemble des énergies solaire et éolienne mondiales. De plus, la réalisation et le remplacement de ces centrales électriques d’énergies renouvelables nécessitent également de l’énergie, donc si le flux de données continue d’augmenter, alors la consommation d’énergies fossiles aussi.

Cependant, faire fonctionner les centres de données avec des sources d’énergie renouvelables ne suffit pas à combler la consommation d’énergie croissante d’Internet.

Enfin, les énergies solaire et éolienne ne sont pas toujours disponibles, ce qui veut dire qu’un Internet fonctionnant à l’aide d’énergies renouvelables nécessiterait une infrastructure pour le stockage de l’énergie et/ou pour son transport, ce qui dépend aussi des énergies fossiles pour sa production et son remplacement. Alimenter les sites web avec de l’énergie renouvelable n’est pas une mauvaise idée, mais la tendance vers l’augmentation de la consommation d’énergie doit aussi être traitée.

Des sites web qui enflent toujours davantage

Tout d’abord, le contenu consomme de plus en plus de ressources. Cela a beaucoup à voir avec l’importance croissante de la vidéo, mais une tendance similaire peut s’observer sur les sites web.

La taille moyenne d’une page web (établie selon les pages des 500 000 domaines les plus populaires) est passée de 0,45 mégaoctets en 2010 à 1,7 mégaoctets en juin 2018. Pour les sites mobiles, le poids moyen d’une page a décuplé, passant de 0,15 Mo en 2011 à 1,6 Mo en 2018. En utilisant une méthode différente, d’autres sources évoquent une moyenne autour de 2,9 Mo en 2018.

La croissance du transport de données surpasse les avancées en matière d’efficacité énergétique (l’énergie requise pour transférer 1 mégaoctet de données sur Internet), ce qui engendre toujours plus de consommation d’énergie. Des sites plus « lourds » ou plus « gros » ne font pas qu’augmenter la consommation d’énergie sur l’infrastructure du réseau, ils raccourcissent aussi la durée de vie des ordinateurs, car des sites plus lourds nécessitent des ordinateurs plus puissants pour y accéder. Ce qui veut dire que davantage d’ordinateurs ont besoin d’être fabriqués, une production très coûteuse en énergie.

Être toujours en ligne ne fait pas bon ménage avec des sources d’énergies renouvelables telles que l’éolien ou le solaire, qui ne sont pas toujours disponibles.

La deuxième raison de l’augmentation de la consommation énergétique d’Internet est que nous passons de plus en plus de temps en ligne. Avant l’arrivée des ordinateurs portables et du Wi-Fi, nous n’étions connectés au réseau que lorsque nous avions accès à un ordinateur fixe au bureau, à la maison ou à la bibliothèque. Nous vivons maintenant dans un monde où quel que soit l’endroit où nous nous trouvons, nous sommes toujours en ligne, y compris, parfois, sur plusieurs appareils à la fois.

Un accès Internet en mode « toujours en ligne » va de pair avec un modèle d’informatique en nuage, permettant des appareils plus économes en énergie pour les utilisateurs au prix d’une dépense plus importante d’énergie dans des centres de données. De plus en plus d’activités qui peuvent très bien se dérouler hors-ligne nécessitent désormais un accès Internet en continu, comme écrire un document, remplir une feuille de calcul ou stocker des données. Tout ceci ne fait pas bon ménage avec des sources d’énergies renouvelables telles que l’éolien ou le solaire, qui ne sont pas disponibles en permanence.

Conception d’un site internet basse technologie

La nouvelle mouture de notre site répond à ces deux problématiques. Grâce à une conception simplifiée de notre site internet, nous avons réussi à diviser par cinq la taille moyenne des pages du blog par rapport à l’ancienne version, tout en rendant le site internet plus agréable visuellement (et plus adapté aux mobiles). Deuxièmement, notre nouveau site est alimenté à 100 % par l’énergie solaire, non pas en théorie, mais en pratique : il a son propre stockage d’énergie et sera hors-ligne lorsque le temps sera couvert de manière prolongée.

Internet n’est pas une entité autonome. Sa consommation grandissante d’énergie est la résultante de décisions prises par des développeurs logiciels, des concepteurs de site internet, des départements marketing, des annonceurs et des utilisateurs d’internet. Avec un site internet poids plume alimenté par l’énergie solaire et déconnecté du réseau, nous voulons démontrer que d’autres décisions peuvent être prises.

Avec 36 articles en ligne sur environ une centaine, le poids moyen d’une page sur le site internet alimenté par énergie solaire est environ cinq fois inférieur à celui de la version précédente.

Pour commencer, la nouvelle conception du site va à rebours de la tendance à des pages plus grosses. Sur 36 articles actuellement en ligne sur environ une centaine, le poids moyen d’une page sur le site internet alimenté par énergie solaire est 0,77 Mo – environ cinq fois inférieur à celui de la version précédente, et moins de la moitié du poids moyen d’une page établi sur les 500 000 blogs les plus populaires en juin 2018.


Ci-dessous : un test de vitesse d’une page web entre l’ancienne et la nouvelle version du magazine Low-Tech. La taille de la page a été divisée par plus de six, le nombre de requêtes par cinq, et la vitesse de téléchargement a été multipliée par dix. Il faut noter que l’on n’a pas conçu le site internet pour être rapide, mais pour une basse consommation d’énergie. La vitesse aurait été supérieure si le serveur avait été placé dans un centre de données et/ou à une position plus centrale de l’infrastructure d’Internet.

Source : Pingdom

Ci-dessous sont détaillées plusieurs des décisions de conception que nous avons faites pour réduire la consommation d’énergie. Des informations plus techniques sont données sur une page distincte. Nous avons aussi libéré le code source pour la conception de notre site internet.

Site statique

Un des choix fondamentaux que nous avons faits a été d’élaborer un site internet statique. La majorité des sites actuels utilisent des langages de programmation côté serveur qui génèrent la page désirée à la volée par requête à une base de données. Ça veut dire qu’à chaque fois que quelqu’un visite une page web, elle est générée sur demande.

Au contraire, un site statique est généré une fois pour toutes et existe comme un simple ensemble de documents sur le disque dur du serveur. Il est toujours là, et pas seulement quand quelqu’un visite la page. Les sites internet statiques sont donc basés sur le stockage de fichiers quand les sites dynamiques dépendent de calculs récurrents. En conséquence, un site statique nécessite moins de puissance de calcul, donc moins d’énergie.

Le choix d’un site statique nous permet d’opérer la gestion de notre site de manière économique depuis notre bureau de Barcelone. Faire la même chose avec un site web généré depuis une base de données serait quasiment impossible, car cela demanderait trop d’énergie. Cela présenterait aussi des risques importants de sécurité. Bien qu’un serveur avec un site statique puisse toujours être piraté, il y a significativement moins d’attaques possibles et les dommages peuvent être plus facilement réparés.

exemple d’images traitées pour en réduire le poids, elles sont monochromes et d’une définition dégradée
Images optimisées pour en réduire le « poids »

Le principal défi a été de réduire la taille de la page sans réduire l’attractivité du site. Comme les images consomment l’essentiel de la bande passante il serait facile d’obtenir des pages très légères et de diminuer l’énergie nécessaire en supprimant les images, en réduisant leur nombre ou en réduisant considérablement leur taille. Néanmoins, les images sont une part importante de l’attractivité de Low-tech Magazine et le site ne serait pas le même sans elles.

Par optimisation, on peut rendre les images dix fois moins gourmandes en ressources, tout en les affichant bien plus largement que sur l’ancien site.

Nous avons plutôt choisi d’appliquer une ancienne technique de compression d’image appelée « diffusion d’erreur ». Le nombre de couleurs d’une image, combiné avec son format de fichier et sa résolution, détermine la taille de cette image. Ainsi, plutôt que d’utiliser des images en couleurs à haute résolution, nous avons choisi de convertir toutes les images en noir et blanc, avec quatre niveaux de gris intermédiaires.

Ces images en noir et blanc sont ensuite colorées en fonction de la catégorie de leur contenu via les capacités de manipulation d’image natives du navigateur. Compressées par ce module appelé dithering, les images présentées dans ces articles ajoutent beaucoup moins de poids au contenu ; par rapport à l’ancien site web, elles sont environ dix fois moins consommatrices de ressources.

Police de caractère par défaut / Pas de logo

Toutes les ressources chargées, y compris les polices de caractères et les logos, le sont par une requête supplémentaire au serveur, nécessitant de l’espace de stockage et de l’énergie. Pour cette raison, notre nouveau site web ne charge pas de police personnalisée et enlève toute déclaration de liste de polices de caractères, ce qui signifie que les visiteurs verront la police par défaut de leur navigateur.

une page du magazine l’image d’illustration est rouge, le fond est jaune, aucun logo n’est ajouté, l’essentiel est du texte et une image
Une page du magazine en version basse consommation

 

Nous utilisons une approche similaire pour le logo. En fait, Low-tech Magazine n’a jamais eu de véritable logo, simplement une bannière représentant une lance, considérée comme une arme low-tech (technologie sobre) contre la supériorité prétendue des « high-tech » (hautes technologies).

Au lieu d’un logo dessiné, qui nécessiterait la production et la distribution d’image et de polices personnalisées, la nouvelle identité de Low-Tech Magazine consiste en une unique astuce typographique : utiliser une flèche vers la gauche à la place du trait d’union dans le nom du blog : LOW←TECH MAGAZINE.

Pas de pistage par un tiers, pas de services de publicité, pas de cookies

Les logiciels d’analyse de sites tels que Google Analytics enregistrent ce qui se passe sur un site web, quelles sont les pages les plus vues, d’où viennent les visiteurs, etc. Ces services sont populaires car peu de personnes hébergent leur propre site. Cependant l’échange de ces données entre le serveur et l’ordinateur du webmaster génère du trafic de données supplémentaire et donc de la consommation d’énergie.

Avec un serveur auto-hébergé, nous pouvons obtenir et visualiser ces mesures de données avec la même machine : tout serveur génère un journal de ce qui se passe sur l’ordinateur. Ces rapports (anonymes) ne sont vus que par nous et ne sont pas utilisés pour profiler les visiteurs.

Avec un serveur auto-hébergé, pas besoin de pistage par un tiers ni de cookies.

Low-tech Magazine a utilisé des publicités Google Adsense depuis ses débuts en 2007. Bien qu’il s’agisse d’une ressource financière importante pour maintenir le blog, elles ont deux inconvénients importants. Le premier est la consommation d’énergie : les services de publicité augmentent la circulation des données, ce qui consomme de l’énergie.

Deuxièmement, Google collecte des informations sur les visiteurs du blog, ce qui nous contraint à développer davantage les déclarations de confidentialité et les avertissements relatifs aux cookies, qui consomment aussi des données et agacent les visiteurs. Nous avons donc remplacé Adsense par d’autres sources de financement (voir ci-dessous pour en savoir plus). Nous n’utilisons absolument aucun cookie.

À quelle fréquence le site web sera-t-il hors-ligne ?

Bon nombre d’entreprises d’hébergement web prétendent que leurs serveurs fonctionnent avec de l’énergie renouvelable. Cependant, même lorsqu’elles produisent de l’énergie solaire sur place et qu’elles ne se contentent pas de « compenser » leur consommation d’énergie fossile en plantant des arbres ou autres, leurs sites Web sont toujours en ligne.

Cela signifie soit qu’elles disposent d’un système géant de stockage sur place (ce qui rend leur système d’alimentation non durable), soit qu’elles dépendent de l’énergie du réseau lorsqu’il y a une pénurie d’énergie solaire (ce qui signifie qu’elles ne fonctionnent pas vraiment à 100 % à l’énergie solaire).

un petit panneau photo-voltaïque au-dessus d’un plus grand. Leur position les expose au soleil.
Le panneau photo-voltaïque solaire de 50 W. Au-dessus, un panneau de 10 W qui alimente un système d’éclairage.

 

En revanche, ce site web fonctionne sur un système d’énergie solaire hors réseau avec son propre stockage d’énergie et hors-ligne pendant les périodes de temps nuageux prolongées. Une fiabilité inférieure à 100 % est essentielle pour la durabilité d’un système solaire hors réseau, car au-delà d’un certain seuil, l’énergie fossile utilisée pour produire et remplacer les batteries est supérieure à l’énergie fossile économisée par les panneaux solaires.

Reste à savoir à quelle fréquence le site sera hors ligne. Le serveur web est maintenant alimenté par un nouveau panneau solaire de 50 Wc et une batterie plomb-acide (12V 7Ah) qui a déjà deux ans. Comme le panneau solaire est à l’ombre le matin, il ne reçoit la lumière directe du soleil que 4 à 6 heures par jour. Dans des conditions optimales, le panneau solaire produit ainsi 6 heures x 50 watts = 300 Wh d’électricité.

Le serveur web consomme entre 1 et 2,5 watts d’énergie (selon le nombre de visiteurs), ce qui signifie qu’il consomme entre 24 et 60 Wh d’électricité par jour. Dans des conditions optimales, nous devrions donc disposer de suffisamment d’énergie pour faire fonctionner le serveur web 24 heures sur 24. La production excédentaire d’énergie peut être utilisée pour des applications domestiques.

Nous prévoyons de maintenir le site web en ligne pendant un ou deux jours de mauvais temps, après quoi il sera mis hors ligne.

Cependant, par temps nuageux, surtout en hiver, la production quotidienne d’énergie pourrait descendre à 4 heures x 10 watts = 40 watts-heures par jour, alors que le serveur nécessite entre 24 et 60 Wh par jour. La capacité de stockage de la batterie est d’environ 40 Wh, en tenant compte de 30 % des pertes de charge et de décharge et de 33 % de la profondeur ou de la décharge (le régulateur de charge solaire arrête le système lorsque la tension de la batterie tombe à 12 V).

Par conséquent, le serveur solaire restera en ligne pendant un ou deux jours de mauvais temps, mais pas plus longtemps. Cependant, il s’agit d’estimations et nous pouvons ajouter une deuxième batterie de 7 Ah en automne si cela s’avère nécessaire. Nous visons un uptime, c’est-à-dire un fonctionnement sans interruption, de 90 %, ce qui signifie que le site sera hors ligne pendant une moyenne de 35 jours par an.

Premier prototype avec batterie plomb-acide (12 V 7 Ah) à gauche et batterie Li-Po UPS (3,7V 6600 mA) à droite. La batterie au plomb-acide fournit l’essentiel du stockage de l’énergie, tandis que la batterie Li-Po permet au serveur de s’arrêter sans endommager le matériel (elle sera remplacée par une batterie Li-Po beaucoup plus petite).

Quel est la période optimale pour parcourir le site ?

L’accessibilité à ce site internet dépend de la météo à Barcelone en Espagne, endroit où est localisé le serveur. Pour aider les visiteurs à « planifier » leurs visites à Low-tech Magazine, nous leur fournissons différentes indications.

Un indicateur de batterie donne une information cruciale parce qu’il peut indiquer au visiteur que le site internet va bientôt être en panne d’énergie – ou qu’on peut le parcourir en toute tranquillité. La conception du site internet inclut une couleur d’arrière-plan qui indique la charge de la batterie qui alimente le site Internet grâce au soleil. Une diminution du niveau de charge indique que la nuit est tombée ou que la météo est mauvaise.

carte météo de l’ouest de l’Europe avec symboles de passages nuageux

Outre le niveau de batterie, d’autres informations concernant le serveur du site web sont affichées grâce à un tableau de bord des statistiques. Celui-ci inclut des informations contextuelles sur la localisation du serveur : heure, situation du ciel, prévisions météorologiques, et le temps écoulé depuis la dernière fois où le serveur s’est éteint à cause d’un manque d’électricité.

Matériel & Logiciel

Nous avons écrit un article plus détaillé d’un point de vue technique : Comment faire un site web basse technologie : logiciels et matériel.

SERVEUR : Ce site web fonctionne sur un ordinateur Olimex A20. Il est doté de 2 GHz de vitesse de processeur, 1 Go de RAM et 16 Go d’espace de stockage. Le serveur consomme 1 à 2,5 watts de puissance.

SOFTWARE DU SERVEUR : le serveur web tourne sur Armbian Stretch, un système d’exploitation Debian construit sur un noyau SUNXI. Nous avons rédigé une documentation technique sur la configuration du serveur web.

LOGICIEL DE DESIGN : le site est construit avec Pelican, un générateur de sites web statiques. Nous avons publié le code source de « solar », le thème que nous avons développé.

CONNEXION INTERNET. Le serveur est connecté via une connexion Internet fibre 100 MBps. Voici comment nous avons configuré le routeur. Pour l’instant, le routeur est alimenté par le réseau électrique et nécessite 10 watts de puissance. Nous étudions comment remplacer ce routeur gourmand en énergie par un routeur plus efficace qui pourrait également être alimenté à l’énergie solaire.

SYSTÈME SOLAIRE PHOTOVOLTAÏQUE. Le serveur fonctionne avec un panneau solaire de 50 Wc et une batterie plomb-acide 12 V 7 Ah. Cependant, nous continuons de réduire la taille du système et nous expérimentons différentes configurations. L’installation photovoltaïque est gérée par un régulateur de charge solaire 20A.

Qu’est-il arrivé à l’ancien site ?

Le site Low-tech Magazine alimenté par énergie solaire est encore en chantier. Pour le moment, la version alimentée par réseau classique reste en ligne. Nous encourageons les lecteurs à consulter le site alimenté par énergie solaire, s’il est disponible. Nous ne savons pas trop ce qui va se passer ensuite. Plusieurs options se présentent à nous, mais la plupart dépendront de l’expérience avec le serveur alimenté par énergie solaire.
Tant que nous n’avons pas déterminé la manière d’intégrer l’ancien et le nouveau site, il ne sera possible d’écrire et lire des commentaires que sur notre site internet alimenté par réseau, qui est toujours hébergé chez TypePad. Si vous voulez envoyer un commentaire sur le serveur web alimenté en énergie solaire, vous pouvez en commentant cette page ou en envoyant un courriel à solar (at) lowtechmagazine (dot) com.

Est-ce que je peux aider ?

Bien sûr, votre aide est la bienvenue.
D’une part, nous recherchons des idées et des retours d’expérience pour améliorer encore plus le site web et réduire sa consommation d’énergie. Nous documenterons ce projet de manière détaillée pour que d’autres personnes puissent aussi faire des sites web basse technologie.

D’autre part, nous espérons recevoir des contributions financières pour soutenir ce projet. Les services publicitaires qui ont maintenu Low-tech Magazine depuis ses débuts en 2007 sont incompatibles avec le design de notre site web poids plume. C’est pourquoi nous cherchons d’autres moyens de financer ce site :

1. Nous proposerons bientôt un service de copies du blog imprimées à la demande. Grâce à ces publications, vous pourrez lire le Low-tech Magazine sur papier, à la plage, au soleil, où vous voulez, quand vous voulez.
2. Vous pouvez nous soutenir en envoyant un don sur PayPal, Patreon ou LiberaPay.
3. Nous restons ouverts à la publicité, mais nous ne pouvons l’accepter que sous forme d’une bannière statique qui renvoie au site de l’annonceur. Nous ne travaillons pas avec les annonceurs qui ne sont pas en phase avec notre mission.

Le serveur alimenté par énergie solaire est un projet de Kris De Decker, Roel Roscam Abbing et Marie Otsuka.




Un navigateur pour diffuser votre site web en pair à pair

Les technologies qui permettent la décentralisation du Web suscitent beaucoup d’intérêt et c’est tant mieux. Elles nous permettent d’échapper aux silos propriétaires qui collectent et monétisent les données que nous y laissons.

Vous connaissez probablement Mastodon, peerTube, Pleroma et autres ressources qui reposent sur le protocole activityPub. Mais connaissez-vous les projets Aragon, IPFS, ou ScuttleButt ?

Aujourd’hui nous vous proposons la traduction d’un bref article introducteur à une technologie qui permet de produire et héberger son site web sur son ordinateur et de le diffuser sans le moindre serveur depuis un navigateur.

L’article original est issu de la série Dweb (Decentralized Web) publiée sur Mozilla Hacks, dans laquelle Dietrich Ayala met le projecteur sur toutes les initiatives récentes autour du Web décentralisé ou distribué.

Traduction Framalang : bengo35, goofy

Blue Link Labs et Beaker

par Tara Vancil

Nous sommes Blue Link Labs, une équipe de trois personnes qui travaillent à améliorer le Web avec le protocole Dat et un navigateur expérimental pair à pair qui s’appelle Beaker.

L'équipe Blue Link Labs
L’équipe Blue Link Labs

 

Nous travaillons sur Beaker car publier et partager est l’essence même du Web. Cependant pour publier votre propre site web ou seulement diffuser un document, vous avez besoin de savoir faire tourner un serveur ou de pouvoir payer quelqu’un pour le faire à votre place.

Nous nous sommes donc demandé « Pourquoi ne pas partager un site Internet directement depuis votre navigateur ? »

Un protocole pair-à-pair comme dat:// permet aux appareils des utilisateurs ordinaires d’héberger du contenu, donc nous utilisons dat:// dans Beaker pour pouvoir publier depuis le navigateur et donc au lieu d’utiliser un serveur, le site web d’un auteur et ses visiteurs l’aident à héberger ses fichiers. C’est un peu comme BitTorrent, mais pour les sites web !

Architecture

Beaker utilise un réseau pair-à-pair distribué pour publier des sites web et des jeux de données (parfois nous appelons ça des « dats »).

Les sites web dat:// sont joignables avec une clé publique faisant office d’URL, et chaque donnée ajoutée à un site web dat:// est attachée à un log signé.
Les visiteurs d’un site web dat:// peuvent se retrouver grâce à une table de hachage distribuée1, puis ils synchronisent les données entre eux, agissant à la fois comme téléchargeurs et téléverseurs, et vérifiant que les données n’ont pas été altérées pendant le transit.

Schéma du réseau DAT
Une illustration basique du réseau dat://

 

Techniquement, un site Web dat:// n’est pas tellement différent d’un site web https:// . C’est une collection de fichiers et de dossiers qu’un navigateur Internet va interpréter suivant les standards du Web. Mais les sites web dat:// sont spéciaux avec Beaker parce que nous avons ajouté une API (interface de programmation) qui permet aux développeurs de faire des choses comme lire, écrire, regarder des fichiers dat:// et construire des applications web pair-à-pair.

Créer un site Web pair-à-pair

Beaker rend facile pour quiconque de créer un nouveau site web dat:// en un clic (faire le tour des fonctionnalités). Si vous êtes familier avec le HTML, les CSS ou le JavaScript (même juste un peu !) alors vous êtes prêt⋅e à publier votre premier site Web dat://.

Les développeurs peuvent commencer par regarder la documentation de notre interface de programmation ou parcourir nos guides.

L’exemple ci-dessous montre comment fabriquer le site Web lui-même via la création et la sauvegarde d’un fichier JSON. Cet exemple est fictif mais fournit un modèle commun pour stocker des données, des profils utilisateurs, etc. pour un site Web dat:// : au lieu d’envoyer les données de l’application sur un serveur, elles peuvent être stockées sur le site web lui-même !

// index.html
Submit message
<script src="index.js"></script>

// index.js
// first get an instance of the website's files
var files = new DatArchive(window.location)
document.getElementById('create-json-button').addEventListener('click', saveMessage)
async function saveMessage () {
var timestamp = Date.now()
var filename = timestamp + '.json'
var content = {
timestamp,
message: document.getElementById('message').value
}

// write the message to a JSON file
// this file can be read later using the DatArchive.readFile API
await files.writeFile(filename, JSON.stringify(content))
}

Pour aller plus loin

Nous avons hâte de voir ce que les gens peuvent faire de dat:// et de Beaker. Nous apprécions tout spécialement quand quelqu’un crée un site web personnel ou un blog, ou encore quand on expérimente l’interface de programmation pour créer une application.

Beaucoup de choses sont à explorer avec le Web pair-à-pair !

Documentation plus technique

  • How Dat works, un guide en anglais qui expose tous les détails sur le stockage des fichiers avec Dat
  • The Dat Protocol Book, également en anglais, plus complet encore.

 

À propos de Tara Vancil

Tara est la co-créatrice du navigateur Beaker. Elle a travaillé précédemment chez Cloudflare et participé au Recurse Center.




Les données que récolte Google, document complet

Ces dernières semaines nous avons publié par chapitres successifs notre traduction de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt.

Vous trouverez ci-dessous en un seul document sous deux formats (.odt et .pdf) non seulement l’ensemble des chapitres publiés précédemment mais aussi les copieuses annexes qui référencent les recherches menées par l’équipe ainsi que les éléments qui ne pouvaient être détaillés dans les chapitres précédents.

Traduction Framalang pour l’ensemble du document :

Alain, Barbara, Bullcheat, Côme, David_m, fab, Fabrice, FranBAG, Goofy, jums, Khrys, Mika, Obny, Penguin, Piup, Serici. Remerciements particuliers à Cyrille.

Nous avons fait de notre mieux, mais des imperfections de divers ordres peuvent subsister, n’hésitez pas à vous emparer de la version en .odt pour opérer les rectifications que vous jugerez nécessaires.

document Ce que collecte google version .PDF
.PDF Version 3.2 (2,6 Mo)

 

 

Ce que collecte Google version ODT
.ODT Version 3.2 (3,3 Mo)




Les données que récolte Google – Ch.7 et conclusion

Voici déjà la traduction du septième chapitre et de la brève conclusion de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt. Si vous les avez manqués, retrouvez les chapitres précédents déjà publiés.


Il s’agit cette fois-ci de tous les récents produits de Google (ou plutôt Alphabet) qui investissent nos pratiques et nos habitudes : des pages AMP aux fournisseurs de services tiers en passant par les assistants numériques, tout est prétexte à collecte de données directement ou non.

Traduction Framalang : Côme, Fabrice, goofy, Khrys, Piup, Serici

VII. Des produits avec un haut potentiel futur d’agrégation de données

83. Google a d’autres produits qui pourraient être adoptés par le marché et pourraient bientôt servir à la collecte de données, tels que AMP, Photos, Chromebook Assistant et Google Pay. Il faut ajouter à cela que Google est capable d’utiliser les données provenant de partenaires pour collecter les informations de l’utilisateur. La section suivante les décrit plus en détail.

84. Il existe également d’autres applications Google qui peuvent ne pas être largement utilisées. Toutefois, par souci d’exhaustivité, la collecte de données par leur intermédiaire est présentée dans la section VIIII.B de l’annexe.

A. Pages optimisées pour les mobiles (AMP)

85. Les Pages optimisées pour les mobiles (AMP) sont une initiative open source menée par Google pour réduire le temps de chargement des sites Web et des publicités. AMP convertit le HTML standard et le code JavaScript en une version simplifiée développée par Google2 qui stocke les pages validées dans un cache des serveurs du réseau Google pour un accès plus rapide3. AMP fournit des liens vers les pages grâce aux résultats de la recherche Google mais également via des applications tierces telles que LinkedIn et Twitter. D’après AMP : « L’ecosystème AMP compte 25 millions de domaines, plus de 100 fournisseurs de technologie et plateformes de pointe qui couvrent les secteurs de la publication de contenu, les publicités, le commerce en ligne, les petits commerces, le commerce local etc. »4

86. L’illustration 17a décrit les étapes menant à la fourniture d’une page AMP accessible via la recherche Google. Merci de noter que le fournisseur de contenu à travers AMP n’a pas besoin de fournir ses propres caches serveur, car c’est quelque chose que Google fournit pour garantir un délai optimal de livraison aux utilisateurs. Dans la mesure où le cache AMP est hébergé sur les serveurs de Google, lors d’un clic sur un lien AMP produit par la recherche Google, le nom de domaine vient du domaine google.com et non pas du domaine du fournisseur. Ceci est montré grâce aux captures prises lors d’un exemple de recherche de mots clés dans l’illustration 17b.

 

Illustration 17 : une page web normale qui devient une page AMP.
Illustration 17 : une page web normale qui devient une page AMP.

 

87. Les utilisateurs peuvent accéder au contenu depuis de multiples fournisseurs dont les articles apparaissent dans les résultats de recherche pendant qu’ils naviguent dans le carrousel AMP, tout en restant dans le domaine de Google. En effet, le cache AMP opère comme un réseau de distribution de contenu (RDC, ou CDN en anglais) appartenant à Google et géré par Google.

88. En créant un outil open source, complété avec un CDN, Google a attiré une large base d’utilisateurs à qui diffuser les sites mobiles et la publicité et cela constitue une quantité d’information significative (p.ex. le contenu lui-même, les pages vues, les publicités, et les informations de celui à qui ce contenu est fourni). Toutes ces informations sont disponibles pour Google parce qu’elles sont collectées sur les serveurs CDN de Google, fournissant ainsi à Google beaucoup plus de données que par tout autre moyen d’accès.

89. L’AMP est très centré sur l’utilisateur, c’est-à-dire qu’il offre aux utilisateurs une expérience de navigation beaucoup plus rapide et améliorée sans l’encombrement des fenêtres pop-up et des barres latérales. Bien que l’AMP représente un changement majeur dans la façon dont le contenu est mis en cache et transmis aux utilisateurs, la politique de confidentialité de Google associée à l’AMP est assez générale5. En particulier, Google est en mesure de recueillir des informations sur l’utilisation des pages Web (par exemple, les journaux de serveur et l’adresse IP) à partir des requêtes envoyées aux serveurs de cache AMP. De plus, les pages standards sont converties en AMP via l’utilisation des API AMP6. Google peut donc accéder à des applications ou à des sites Web (« clients API ») et utiliser toute information soumise par le biais de l’API conformément à ses politiques générales7.

90. Comme les pages Web ordinaires, les pages Web AMP pistent les données d’utilisation via Google Analytics et DoubleClick. En particulier, elles recueillent des informations sur les données de page (par exemple : domaine, chemin et titre de page), les données d’utilisateur (par exemple : ID client, fuseau horaire), les données de navigation (par exemple : ID et référence de page uniques), l’information du navigateur et les données sur les interactions et les événements8. Bien que les modes de collecte de données de Google n’aient pas changé avec l’AMP, la quantité de données recueillies a augmenté puisque les visiteurs passent 35 % plus de temps sur le contenu Web qui se charge avec Google AMP que sur les pages mobiles standard.9

B. Google Assistant

91. Google Assistant est un assistant personnel virtuel auquel on accède par le biais de téléphones mobiles et d’appareils dits intelligents. C’est un assistant virtuel populaire, comme Siri d’Apple, Alexa d’Amazon et Cortana de Microsoft. 10 Google Assistant est accessible via le bouton d’accueil des appareils mobiles sous Android 6.0 ou versions ultérieures. Il est également accessible via une application dédiée sur les appareils iOS11, ainsi que par l’intermédiaire de haut-parleurs intelligents, tel Google Home, qui offre de nombreuses fonctions telles que l’envoi de textes, la recherche de courriels, le contrôle de la musique, la recherche de photos, les réponses aux questions sur la météo ou la circulation, et le contrôle des appareils domestiques intelligents12.

92. Google collecte toutes les requêtes de Google Assistant, qu’elles soient audio ou saisies au clavier. Il collecte également l’emplacement où la requête a été effectuée. L’illustration 18 montre le contenu d’une requête enregistrée par Google. Outre son utilisation via les haut-parleurs  de Google Home, Google Assistant est activé sur divers autres haut-parleurs produits par des tiers (par exemple, les casques sans fil de Bose). Au total, Google Assistant est disponible sur plus de 400 millions d’appareils13. Google peut collecter des données via l’ensemble de ces appareils puisque les requêtes de l’Assistant passent par les serveurs de Google.

 

Figure 18 : Exemple de détails collectés à partir de la requête Google Assistant.
Figure 18 : Exemple de détails collectés à partir de la requête Google Assistant.

 

 

C. Photos

93. Google Photos est utilisé par plus de 500 millions de personnes dans le monde et stocke plus de 1,2 milliard de photos et vidéos chaque jour14. Google enregistre l’heure et les coordonnées GPS de chaque photo prise.Google télécharge des images dans le Google cloud et effectue une analyse d’images pour identifier un large éventail d’objets, tels que les modes de transport, les animaux, les logos, les points de repère, le texte et les visages15. Les capacités de détection des visages de Google permettent même de détecter les états émotionnels associés aux visages dans les photos téléchargées et stockées dans leur cloud16.

94. Google Photos effectue cette analyse d’image par défaut lors de l’utilisation du produit, mais ne fera pas de distinction entre les personnes, sauf si l’utilisateur donne l’autorisation à l’application17. Si un utilisateur autorise Google à regrouper des visages similaires, Google identifie différentes personnes à l’aide de la technologie de reconnaissance faciale et permet aux utilisateurs de partager des photos grâce à sa technologie de « regroupement de visages »1819. Des exemples des capacités de classification d’images de Google avec et sans autorisation de regroupement des visages de l’utilisateur sont présentés dans l’illustration 19. Google utilise Photos pour assembler un vaste ensemble d’informations d’identifications faciales, qui a récemment fait l’objet de poursuites judiciaires20 de la part de certains États.

Illustration : Exemple de reconnaissance d’images dans Google Photos.
Illustration : Exemple de reconnaissance d’images dans Google Photos.

 

D. Chromebook

95. Chromebook est la tablette-ordinateur de Google qui fonctionne avec le système d’exploitation Chrome (Chrome OS) et permet aux utilisateurs d’accéder aux applications sur le cloud. Bien que Chromebook ne détienne qu’une très faible part du marché des PC, il connaît une croissance rapide, en particulier dans le domaine des appareils informatiques pour la catégorie K-12, où il détenait 59,8 % du marché au deuxième trimestre 201721. La collecte de données de Chromebook est similaire à celle du navigateur Google Chrome, qui est décrite dans la section II.A. Chromebooks permet également aux cookies de Google et de domaines tiers de pister l’activité de l’utilisateur, comme pour tout autre ordinateur portable ou PC.

96. De nombreuses écoles de la maternelle à la terminale utilisent des Chromebooks pour accéder aux produits Google via son service GSuite for Education. Google déclare que les données recueillies dans le cadre d’une telle utilisation ne sont pas utilisées à des fins de publicité ciblée22. Toutefois, les étudiants reçoivent des publicités s’ils utilisent des services supplémentaires (tels que YouTube ou Blogger) sur les Chromebooks fournis par leur établissement d’enseignement.

E. Google Pay

97. Google Pay est un service de paiement numérique qui permet aux utilisateurs de stocker des informations de carte de crédit, de compte bancaire et de PayPal pour effectuer des paiements en magasin, sur des sites Web ou dans des applications utilisant Google Chrome ou un appareil Android connecté23. Pay est le moyen par lequel Google collecte les adresses et numéros de téléphone vérifiés des utilisateurs, car ils sont associés aux comptes de facturation. En plus des renseignements personnels, Pay recueille également des renseignements sur la transaction, comme la date et le montant de la transaction, l’emplacement et la description du marchand, le type de paiement utilisé, la description des articles achetés, toute photo qu’un utilisateur choisit d’associer à la transaction, les noms et adresses électroniques du vendeur et de l’acheteur, la description du motif de la transaction par l’utilisateur et toute offre associée à la transaction24. Google traite ses informations comme des informations personnelles en fonction de sa politique générale de confidentialité. Par conséquent il peut utiliser ces informations sur tous ses produits et services pour fournir de la publicité très ciblée25. Les paramètres de confidentialité de Google l’autorisent par défaut à utiliser ces données collectées26.

F. Données d’utilisateurs collectées auprès de fournisseurs de données tiers

98. Google collecte des données de tiers en plus des informations collectées directement à partir de leurs services et applications. Par exemple, en 2014, Google a annoncé qu’il commencerait à suivre les ventes dans les vrais commerces réels en achetant des données sur les transactions par carte de crédit et de débit. Ces données couvraient 70 % de toutes les opérations de crédit et de débit aux États-Unis27. Elles contenaient le nom de l’individu, ainsi que l’heure, le lieu et le montant de son achat28.

99. Les données de tiers sont également utilisées pour aider Google Pay, y compris les services de vérification, les informations résultant des transactions Google Pay chez les commerçants, les méthodes de paiement, l’identité des émetteurs de cartes, les informations concernant l’accès aux soldes du compte de paiement Google, les informations de facturation des opérateurs et transporteurs et les rapports des consommateurs29. Pour les vendeurs, Google peut obtenir des informations des organismes de crédit aux particuliers ou aux entreprises.

100. Bien que l’information des utilisateurs tiers que Google reçoit actuellement soit de portée limitée, elle a déjà attiré l’attention des autorités gouvernementales. Par exemple, la FTC a annoncé une injonction contre Google en juillet 2017 concernant la façon dont la collecte par Google de données sur les achats des consommateurs porte atteinte à la vie privée électronique30. L’injonction conteste l’affirmation de Google selon laquelle il peut protéger la vie privée des consommateurs tout au long du processus en utilisant son algorithme. Bien que d’autres mesures n’aient pas encore été prises, l’injonction de la FTC est un exemple des préoccupations du public quant à la quantité de données que Google recueille sur les consommateurs.

VIII. CONCLUSION

101. Google compte un pourcentage important de la population mondiale parmi ses clients directs, avec de multiples produits en tête de leurs marchés mondiaux et de nombreux produits qui dépassent le milliard d’utilisateurs actifs par mois. Ces produits sont en mesure de recueillir des données sur les utilisateurs au moyen d’une variété de techniques qui peuvent être difficiles à comprendre pour un utilisateur moyen. Une grande partie de la collecte de données de Google a lieu lorsque l’utilisateur n’utilise aucun de ses produits directement. L’ampleur d’une telle collecte est considérable, en particulier sur les appareils mobiles Android. Et bien que ces informations soient généralement recueillies sans identifier un utilisateur unique, Google a la possibilité d’utiliser les données recueillies auprès d’autres sources pour désanonymiser une telle collecte.




Les données que récolte Google – Ch.6

Voici déjà la traduction du sixième chapitre de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt. Si vous les avez manqués, retrouvez les chapitres précédents déjà publiés.


Il s’agit cette fois de comprendre comment Google complète les données collectées avec les données provenant des applications et des comptes connectés des utilisateurs.

Traduction Framalang : Auteurs: Khrys, Piup, Goofy, David_m, Côme, Fabrice, Serici

 

VI. Données collectées par les applications clés de Google destinées aux particuliers

67. Google a des dizaines de produits et services qui évoluent en permanence (une liste est disponible dans le tableau 4, section IX.B de l’annexe). On accède souvent à ces produits grâce à un compte Google (ou on l’y associe), ce qui permet à Google de relier directement les détails des activités de l’utilisateur de ses produits et services à un profil utilisateur. En plus des données d’usage de ses produits, Google collecte également des identificateurs et des données de localisation liés aux appareils lorsqu’on accède aux services Google. 31

68. Certaines applications de Google (p.ex. YouTube, Search, Gmail et Maps) occupent une place centrale dans les tâches de base qu’une multitude d’utilisateurs effectuent quotidiennement sur leurs appareils fixes ou mobiles. Le tableau 2 décrit la portée de ces produits clés. Cette section explique comment chacune de ces applications majeures collecte les informations des utilisateurs.

Tableau 2 : Portée mondiale des principales applications Google

Produits  Utilisateurs actifs
Search  Plus d’un milliard d’utilisateurs actifs par mois, 90.6 % de part de marché des moteurs de recherche 32
Youtube  Plus de 1,8 milliard d’utilisateurs inscrits et actifs par mois 33
Maps  Plus d’un milliard d’utilisateurs actifs par mois 34
Gmail  1,2 milliard d’utilisateurs enregistrés 35

A. Recherche

69. Google Search est le moteur de recherche sur internet le plus populaire au monde 36, avec plus de 11 milliards de requêtes par mois aux États-Unis 37. En plus de renvoyer un classement de pages web en réponse aux requêtes globales des utilisateurs, Google exploite d’autres outils basés sur la recherche, tels que Google Finance, Flights (vols), News (actualités), Scholar (recherche universitaire), Patents (brevets), Books (livres), Images, Videos et Hotels. Google utilise ses applications de recherche afin de collecter des données liées aux recherches, à l’historique de navigation ainsi qu’aux activités d’achats et de clics sur publicités. Par exemple, Google Finance collecte des informations sur le type d’actions que les utilisateurs peuvent suivre, tandis que Google Flight piste leurs réservations et recherches de voyage.

70. Dès lors que Search est utilisé, Google collecte les données de localisation par différents biais, sur ordinateur ou sur mobile, comme décrit dans les sections précédentes. Google enregistre toute l’activité de recherche d’un utilisateur ou utilisatrice et la relie à son compte Google si cette personne est connectée. L’illustration 13 montre un exemple d’informations collectées par Google sur une recherche utilisateur par mot-clé et la navigation associée.

Un exemple de collecte de données de recherche extrait de la page My Activity (Mon Activité) d'un utilisateur
Illustration 13 : Un exemple de collecte de données de recherche extrait de la page My Activity (Mon Activité) d’un utilisateur

 

71. Non seulement c’est le moteur de recherche par défaut sur Chrome et les appareils Google, mais Google Search est aussi l’option par défaut sur d’autres navigateurs internet et applications grâce à des arrangements de distribution. Ainsi, Google est récemment devenu le moteur de recherche par défaut sur le navigateur internet Mozilla Firefox 38 dans des régions clés (dont les USA et le Canada), une position occupée auparavant par Yahoo. De même, Apple est passé de Microsoft Bing à Google pour les résultats de recherche via Siri sur les appareils iOS et Mac 39. Google a des accords similaires en place avec des OEM (fabricants d’équipement informatique ou électronique) 40, ce qui lui permet d’atteindre les consommateurs mobiles.

B. YouTube

72. YouTube met à disposition des utilisateurs et utilisatrices une plateforme pour la mise en ligne et la visualisation de contenu vidéo. Il attire plus de 180 millions de personnes rien qu’aux États-Unis et a la particularité d’être le deuxième site le plus visité des États-Unis 41, juste derrière Google Search. Au sein des entreprises de streaming multimédia, YouTube possède près de 80 % de parts de marché en termes de visites mensuelles (comme décrit dans l’illustration 14). La quantité de contenu mis en ligne et visualisé sur YouTube est conséquente : 400 heures de vidéo sont mises en ligne chaque minute 42 et 1 milliard d’heures de vidéo sont visualisées quotidiennement sur la plateforme YouTube.43

Illustration 14 : Comparaison d'audiences mensuelles des principaux sites multimédia aux États-Unis

 

Illustration 14 : Comparaison d’audiences mensuelles des principaux sites multimédia aux États-Unis 44

73. Les utilisateurs peuvent accéder à YouTube sur l’ordinateur (navigateur internet), sur leurs appareils mobiles (application et/ou navigateur internet) et sur Google Home (via un abonnement payant appelé YouTube Red). Google collecte et sauvegarde l’historique de recherche, l’historique de visualisation, les listes de lecture, les abonnements et les commentaires aux vidéos. La date et l’horaire de chaque activité sont ajoutés à ces informations.

74. Si un utilisateur se connecte à son compte Google pour accéder à n’importe quelle application Google via un navigateur internet (par ex. Chrome, Firefox, Safari), Google reconnaît l’identité de l’utilisateur, même si l’accès à la vidéo est réalisé par un site hors Google (ex. : vidéos YouTube lues sur cnn.com). Cette fonctionnalité permet à Google de pister l’utilisation YouTube d’un utilisateur à travers différentes plateformes tierces. L’illustration 15 montre un exemple de données YouTube collectées.

 

Illustration 15 : Exemple de collecte de données YouTube dans My Activity (Mon Activité)
Illustration 15 : Exemple de collecte de données YouTube dans My Activity (Mon Activité)

 

75. Google propose également un produit YouTube différencié pour les enfants, appelé YouTube Kids, dans l’intention d’offrir une version « familiale » de YouTube avec des fonctionnalités de contrôle parental et de filtres vidéos. Google collecte des informations de YouTube Kids, notamment le type d’appareil, le système d’exploitation, l’identifiant unique de l’appareil, les informations de journalisation et les détails d’utilisation du service. Google utilise ensuite ces informations pour fournir des annonces publicitaires limitées, qui ne sont pas cliquables et dont le format, la durée et le site sont limités.45.

C. Maps

76. Maps est l’application phare de navigation routière de Google. Google Maps peut déterminer les trajets et la vitesse d’un utilisateur et ses lieux de fréquentation régulière (ex. : domicile, travail, restaurants et magasins). Cette information donne à Google une idée des intérêts (ex. : préférences d’alimentation et d’achats), des déplacements et du comportement de l’utilisateur.

77. Maps utilise l’adresse IP, le GPS, le signal cellulaire et les points d’accès au Wi-Fi pour calculer la localisation d’un appareil. Les deux dernières informations sont collectées par le biais de l’appareil où Maps est utilisé, puis envoyées à Google pour évaluer la localisation via son interface de localisation (Location API). Cette interface fournit de nombreux détails sur un utilisateur, dont les coordonnées géographiques, son état stationnaire ou en mouvement, sa vitesse et la détermination probabiliste de son mode de transport (ex. : en vélo, voiture, train, etc.).

78. Maps sauvegarde un historique des lieux qu’un utilisateur connecté à Maps par son compte Googe a visités. L’illustration 16. montre un exemple d’un tel historique 46. Les points rouges indiquent les coordonnées géographiques recueillies par Maps lorsque l’utilisateur se déplace ; les lignes bleues représentent les projections de Maps sur le trajet réel de l’utilisateur.

Illustration 16 : Exemple d'un historique Google Maps (« Timeline ») d'un utilisateur réel
Illustration 16 : Exemple d’un historique Google Maps (« Timeline ») d’un utilisateur réel

79. La précision des informations de localisation recueillies par les applications de navigation routière permet à Google de non seulement cibler des audiences publicitaires, mais l’aide aussi à fournir des annonces publicitaires aux utilisateurs lorsqu’ils s’approchent d’un magasin 47. Google Maps utilise de plus ces informations pour générer des données de trafic routier en temps réel.48

D. Gmail

80. Gmail sauvegarde tous les messages (envoyés et reçus), le nom de l’expéditeur, son adresse email et la date et l’heure des messages envoyés ou reçus. Puisque Gmail représente pour beaucoup un répertoire central pour la messagerie électronique, il peut déterminer leurs intérêts en scannant le contenu de leurs courriels, identifier les adresses de commerçants grâce à leurs courriels publicitaires ou les factures envoyées par message électronique, et connaître l’agenda d’un utilisateur (ex. : réservations à dîner, rendez-vous médicaux…). Étant donné que les utilisateurs utilisent leur identifiant Gmail pour des plateformes tierces (Facebook, LinkedIn…), Google peut analyser tout contenu qui leur parvient sous forme de courriel (ex. : notifications, messages).

81. Depuis son lancement en 2004 jusqu’à la fin de l’année 2017 (au moins), Google peut avoir analysé le contenu des courriels Gmail pour améliorer le ciblage publicitaire et les résultats de recherche ainsi que ses filtres de pourriel. Lors de l’été 2016, Google a franchi une nouvelle étape et a modifié sa politique de confidentialité pour s’autoriser à fusionner les données de navigation, autrefois anonymes, de sa filiale DoubleClick (qui fournit des publicités personnalisées sur internet) avec les données d’identification personnelles qu’il amasse à travers ses autres produits, dont Gmail 49. Le résultat : « les annonces publicitaires DoubleClick qui pistent les gens sur Internet peuvent maintenant leur être adaptées sur mesure, en se fondant sur les mots-clés qu’ils ont utilisés dans leur messagerie Gmail. Cela signifie également que Google peut à présent reconstruire le portrait complet d’une utilisatrice ou utilisateur par son nom, en fonction de tout ce qui est écrit dans ses courriels, sur tous les sites visités et sur toutes les recherches menées. » 50

82. Vers la fin de l’année 2017, Google a annoncé qu’il arrêterait la personnalisation des publicités basées sur les messages Gmail 51. Cependant, Google a annoncé récemment qu’il continue à analyser les messages Gmail pour certaines raisons 52.




Les données que récolte Google – Ch.5

Voici déjà la traduction du cinquième chapitre de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt. Si vous les avez manqués, retrouvez les chapitres précédents déjà publiés.
Il s’agit cette fois d’explorer la quantité de données que Google collecte lorsque l’on a désactivé tout ce qui pouvait l’être…

Traduction Framalang : Khrys, Mika, Piup, David_m, Côme, Serici, Fabrice, Bullcheat, Goofy

V. Quantité de données collectées lors d’une utilisation minimale des produits Google

58. Cette section montre les détails de la collecte de données par Google à travers ses services de publication et d’annonces. Afin de comprendre une telle collecte de données, une expérience est réalisée impliquant un utilisateur qui se sert de son téléphone dans sa vie de tous les jours mais qui évite délibérément d’utiliser les produits Google (Search, Gmail, YouTube, Maps, etc.), exception faite du navigateur Chrome.

59. Pour que l’expérience soit aussi réaliste que possible, plusieurs études sur les usages de consommateurs5354 ont été utilisées pour créer le profil d’usage journalier d’un utilisateur lambda. Ensuite, toutes les interactions directes avec les services Google ont été retirées du profil. La section IX.F dans les annexes liste les sites internet et applications utilisés pendant l’expérience.

60. L’expérience a été reproduite sur des appareils Android et iOS et les données HTTPS envoyées aux serveurs Google et Apple ont été tracées et analysées en utilisant une méthode similaire à celle expliquée dans la section précédente. Les résultats sont résumés dans la figure 12. Pendant la période de 24 h (qui inclut la période de repos nocturne), la majorité des appels depuis le téléphone Android ont été effectués vers les services Google de localisation et de publication de publicités (DoubleClick, Analytics). Google a enregistré la géolocalisation de l’utilisateur environ 450 fois, ce qui représente 1,4 fois le volume de l’expérience décrite dans la section III.C, qui se basait sur un téléphone immobile.

comparaison des requêtes Google entre iOS et Android avec téléphone en mouvement

Figure 12 : Requêtes du téléphone portable durant une journée typique d’utilisation

61. Les serveurs de Google communiquent significativement moins souvent avec un appareil iPhone qu’avec Android (45 % moins). En revanche, le nombre d’appels aux régies publicitaires de Google reste les mêmes pour les deux appareils — un résultat prévisible puisque l’utilisation de pages web et d’applications tierces était la même sur chacun des périphériques. À noter, une différence importante est que l’envoi de données de géolocalisation à Google depuis un appareil iOS est pratiquement inexistant. En absence des plateformes Android et Chrome — ou de l’usage d’un des autres produits de Google — Google perd significativement sa capacité à pister la position des utilisateurs.

62. Le nombre total d’appels aux serveurs Apple depuis un appareil iOS était bien moindre, seulement 19 % des appels aux serveurs de Google depuis l’appareil Android. De plus, il n’y a pas d’appels aux serveurs d’Apple liés à la publicité, ce qui pourrait provenir du fait que le modèle économique d’Apple ne dépend pas autant de la publicité que celui de Google. Même si Apple obtient bien certaines données de localisation des utilisateurs d’appareil iOS, le volume de données collectées est bien moindre (16 fois moins) que celui collecté par Google depuis Android.

63. Au total, les téléphones Android ont communiqué 11.6 Mo de données par jour (environ 350 Mo par mois) avec les serveurs de Google. En comparaison, l’iPhone n’a envoyé que la moitié de ce volume. La quantité de données spécifiques aux régies publicitaires de Google est restée pratiquement identique sur les deux appareils.

64. L’appareil iPhone a communiqué bien moins de données aux serveurs Apple que l’appareil Android n’a échangé avec les serveurs Google.

65. De manière générale, même en l’absence d’interaction utilisateur avec les applications Google les plus populaires, un utilisateur de téléphone Android muni du navigateur Chrome a tout de même tendance à envoyer une quantité non négligeable de données à Google, dont la majorité est liée à la localisation et aux appels aux serveurs de publicité. Bien que, dans le cadre limité de cette expérience, un utilisateur d’iPhone soit protégé de la collecte des données de localisation par Google, Google recueille tout de même une quantité comparable de données liées à la publicité.

66. La section suivante décrit les données collectées par les applications les plus populaires de Google, telles que Gmail, Youtube, Maps et la recherche.




Les données que récolte Google – Ch.4

Voici déjà la traduction du quatrième chapitre de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt. Si vous les avez manqués, retrouvez les chapitres précédents déjà publiés.
Il s’agit cette fois d’explorer les stratégies des régies publicitaires qui opèrent en arrière-plan : des opérations fort discrètes mais terriblement efficaces…

Traduction Framalang : Côme, goofy, Khrys,Obny, Penguin, Piup, serici.

IV. Collecte de données par les outils des annonceurs et des diffuseurs

29. Une source majeure de collecte des données d’activité des utilisateurs provient des outils destinés au annonceurs et aux éditeurs tels que Google Analytics, DoubleClick, AdSense, AdWords et AdMob. Ces outils ont une portée énorme ; par exemple, plus d’un million d’applications mobiles utilisent AdMob55, plus d’un million d’annonceurs utilisent AdWords56, plus de 15 millions de sites internet utilisent AdSense57 et plus de 30 millions de sites utilisent Google Analytics58.

30. Au moment de la rédaction du présent rapport, Google a rebaptisé AdWords « Google Ads » et DoubleClick « Google Ad Manager« , mais aucune modification n’a été apportée aux fonctionnalités principales des produits, y compris la collecte d’informations par ces produits59. Par conséquent, pour les besoins du présent rapport, les premiers noms ont été conservés afin d’éviter toute confusion avec des noms de domaine connexes (tels que doubleclick.net).

31. Voici deux principaux groupes d’utilisateurs des outils de Google axés sur l’édition — et les annonces publicitaires :

  • Les éditeurs de sites web et d’applications, qui sont des organisations qui possèdent des sites web et créent des applications mobiles. Ces entités utilisent les outils de Google pour (1) gagner de l’argent en permettant l’affichage d’annonces aux visiteurs sur leurs sites web ou applications, et (2) mieux suivre et comprendre qui visite leurs sites et utilise leurs applications. Les outils de Google placent des cookies et exécutent des scripts dans les navigateurs des visiteurs du site web pour aider à déterminer l’identité d’un utilisateur et suivre son intérêt pour le contenu et son comportement en ligne. Les bibliothèques d’applications mobiles de Google suivent l’utilisation des applications sur les téléphones mobiles.
  • Les annonceurs, qui sont des organisations qui paient pour que des bannières, des vidéos ou d’autres publicités soient diffusées aux utilisateurs lorsqu’ils naviguent sur Internet ou utilisent des applications. Ces entités utilisent les outils de Google pour cibler des profils spécifiques de personnes pour que les publicités augmentent le retour sur leurs investissements marketing (les publicités mieux ciblées génèrent généralement des taux de clics et de conversion plus élevés). De tels outils permettent également aux annonceurs d’analyser leurs audiences et de mesurer l’efficacité de leur publicité numérique en regardant sur quelles annonces les utilisateurs cliquent et à quelle fréquence, et en donnant un aperçu du profil des personnes qui ont cliqué sur les annonces.

32. Ensemble, ces outils recueillent des informations sur les activités des utilisateurs sur les sites web et dans les applications, comme le contenu visité et les annonces cliquées. Ils travaillent en arrière-plan — en général imperceptibles par des utilisateurs. La figure 7 montre certains de ces outils clés, avec des flèches indiquant les données recueillies auprès des utilisateurs et les publicités qui leur sont diffusées.

Figure 7 : Produits Google destinés aux éditeurs et annonceurs60

33. Les informations recueillies par ces outils comprennent un identifiant non personnel que Google peut utiliser pour envoyer des publicités ciblées sans identifier les informations personnelles de la personne concernée. Ces identificateurs peuvent être spécifiques à l’appareil ou à la session, ainsi que permanents ou semi-permanents. Le tableau 1 liste un ensemble de ces identificateurs. Afin d’offrir aux utilisateurs un plus grand anonymat lors de la collecte d’informations pour le ciblage publicitaire, Google s’est récemment tourné vers l’utilisation d’identifiants uniques semi-permanents (par exemple, les GAID)61. Des sections ultérieures décrivent en détail la façon dont ces outils recueillent les données des utilisateurs et l’utilisation de ces identificateurs au cours du processus de collecte des données.

Tableau 1: Identificateurs transmis à Google

Identificateur Type Description
GAID/IDFA Semi-permanent Chaine de caractères alphanumériques pour appareils Android et iOS, pour permettre les publicités ciblées sur mobile. Réinitialisable par l’utilisateur.
ID client Semi-permanent ID créé la première fois qu’un cookie est stocké sur le navigateur. Utilisé pour relier les sessions de navigations. Réinitialisé lorsque les cookies du navigateur sont effacés.
Adresse IP Semi-permanent Une unique suite de nombre qui identifie le réseau par lequel un appareil accède à internet.
ID appareil Android Semi-permanent Nombre généré aléatoirement au premier démarrage d’un appareil. Utilisé pour identifier l’appareil. En retrait progressif pour la publicité. Réinitialisé lors d’une remise à zéro de l’appareil.
Google Services Framework (GSF) Semi-permanent Nombre assigné aléatoirement lorsqu’un utilisateur s’enregistre pour la première fois dans les services Google sur un appareil. Utilisé pour identifier un appareil unique. Réinitialisé lors d’une remise à zéro de l’appareil.
IEMI / MEID Permanent Identificateur utilisé dans les standards de communication mobile. Unique pour chaque téléphone portable.
Adresse MAC Permanent Identificateur unique de 12 caractères pour un élément matériel (ex. : routeur).
Numéro de série Permanent Chaine de caractères alphanumériques utilisée pour identifier un appareil.

A. Google Analytics et DoubleClick

34. DoubleClick et Google Analytics (GA) sont les produits phares de Google en matière de suivi du comportement des utilisateurs et d’analyse du trafic des pages Web sur les périphériques de bureau et mobiles. GA est utilisé par environ 75 % des 100 000 sites Web les plus visités62. Les cookies DoubleClick sont associés à plus de 1,6 million de sites Web63.

35. GA utilise de petits segments de code de traçage (appelés « balises de page ») intégrés dans le code HTML d’un site Web64. Après le chargement d’une page Web à la demande d’un utilisateur, le code GA appelle un fichier analytics.js qui se trouve sur les serveurs de Google. Ce programme transfère un instantané « par défaut » des données de l’utilisateur à ce moment, qui comprend l’adresse de la page web visitée, le titre de la page, les informations du navigateur, l’emplacement actuel (déduit de l’adresse IP), et les paramètres de langue de l’utilisateur. Les scripts de GA utilisent des cookies pour suivre le comportement des utilisateurs.

36. Le script de GA, la première fois qu’il est exécuté, génère et stocke un cookie spécifique au navigateur sur l’ordinateur de l’utilisateur. Ce cookie a un identificateur de client unique (voir le tableau 1 pour plus de détails)65 Google utilise l’identificateur unique pour lier les cookies précédemment stockés, qui capturent l’activité d’un utilisateur sur un domaine particulier tant que le cookie n’expire pas ou que l’utilisateur n’efface pas les cookies mis en cache dans son navigateur66

37. Alors qu’un cookie GA est spécifique au domaine particulier du site Web que l’utilisateur visite (appelé « cookie de première partie »), un cookie DoubleClick est généralement associé à un domaine tiers commun (tel que doubleclick.net). Google utilise de tels cookies pour suivre l’interaction de l’utilisateur sur plusieurs sites web tiers67 Lorsqu’un utilisateur interagit avec une publicité sur un site web, les outils de suivi de conversion de DoubleClick (par exemple, Floodlight) placent des cookies sur l’ordinateur de l’utilisateur et génèrent un identifiant client unique68 Par la suite, si l’utilisateur visite le site web annoncé, le serveur DoubleClick accède aux informations stockées dans le cookie, enregistrant ainsi la visite comme une conversion valide.

B. AdSense, AdWords et AdMob

38. AdSense et AdWords sont des outils de Google qui diffusent des annonces sur les sites Web et dans les résultats de recherche Google, respectivement. Plus de 15 millions de sites Web ont installé AdSense pour afficher des annonces sponsorisées69 De même, plus de 2 millions de sites web et applications, qui constituent le réseau Google Display Network (GDN) et touchent plus de 90 % des internautes70 affichent des annonces AdWords.

39. AdSense collecte des informations indiquant si une annonce a été affichée ou non sur la page web de l’éditeur. Il recueille également la façon dont l’utilisateur a interagi avec l’annonce, par exemple en cliquant sur l’annonce ou en suivant le mouvement du curseur sur l’annonce71. AdWords permet aux annonceurs de diffuser des annonces de recherche sur Google Search, d’afficher des annonces sur les pages des éditeurs et de superposer des annonces sur des vidéos YouTube. Pour suivre les taux de clics et de conversion des utilisateurs, les publicités AdWords placent un cookie sur les navigateurs des utilisateurs pour identifier l’utilisateur s’il visite par la suite le site web de l’annonceur ou s’il effectue un achat72.

40. Bien qu’AdSense et AdWords recueillent également des données sur les appareils mobiles, leur capacité d’obtenir des renseignements sur les utilisateurs des appareils mobiles est limitée puisque les applications mobiles ne partagent pas de cookies entre elles, une technique d’isolement appelée « bac à sable »73 qui rend difficile pour les annonceurs de suivre le comportement des utilisateurs entre différentes applications mobiles.

41 Pour résoudre ce problème, Google et d’autres entreprises utilisent des « bibliothèques d’annonces » mobiles (comme AdMob) qui sont intégrées dans les applications par leurs développeurs pour diffuser des annonces dans les applications mobiles. Ces bibliothèques compilent et s’exécutent avec les applications et envoient à Google des données spécifiques à l’application à laquelle elles sont intégrées, y compris les emplacements GPS, la marque de l’appareil et le modèle de l’appareil lorsque les applications ont les autorisations appropriées. Comme on peut le voir dans les analyses de trafic de données (Figure 8), et comme on peut trouver confirmation sur les propres pages web des développeurs de Google74, de telles bibliothèques peuvent également envoyer des données personnelles de l’utilisateur, telles que l’âge et le genre, tout cela va vers Google à chaque fois que les développeurs d’applications envoient explicitement leurs valeurs numériques vers la bibliothèque.

Figure 8 : Aperçu des informations renvoyées à Google lorsqu’une application est lancée

C. Association de données recueillies passivement et d’informations à caractère personnel

42. Comme nous l’avons vu plus haut, Google recueille des données par l’intermédiaire de produits pour éditeurs et annonceurs, et associe ces données à une variété d’identificateurs semi-permanents et anonymes. Google a toutefois la possibilité d’associer ces identifiants aux informations personnelles d’un utilisateur. C’est ce qu’insinuent les déclarations faites dans la politique de confidentialité de Google, dont des extraits sont présentés à la figure 9. La zone de texte à gauche indique clairement que Google peut associer des données provenant de services publicitaires et d’outils d’analyse aux informations personnelles d’un utilisateur, en fonction des paramètres du compte de l’utilisateur. Cette disposition est activée par défaut, comme indiqué dans la zone de texte à droite.

Figure 9 : Page de confidentialité de Google pour la collecte de sites web tiers et l’association avec des informations personnelles7576.

43. De plus, une analyse du trafic de données échangé avec les serveurs de Google (résumée ci-dessous) a permis d’identifier deux exemples clés (l’un sur Android et l’autre sur Chrome) qui montrent la capacité de Google à corréler les données recueillies de façon anonyme avec les renseignements personnels des utilisateurs.

1) L’identificateur de publicité mobile peut être désanonymé grâce aux données envoyées à Google par Android.

44. Les analyses du trafic de données communiqué entre un téléphone Android et les domaines de serveur Google suggèrent un moyen possible par lequel des identifiants anonymes (GAID dans ce cas) peuvent être associés au compte Google d’un utilisateur. La figure 10 décrit ce processus en une série de trois étapes clés.

45. Dans l’étape 1, une donnée de check-in est envoyée à l’URL android.clients.google.com/checkin. Cette communication particulière fournit une synchronisation de données Android aux serveurs Google et contient des informations du journal Android (par exemple, du journal de récupération), des messages du noyau, des crash dumps, et d’autres identifiants liés au périphérique. Un instantané d’une demande d’enregistrement partiellement décodée envoyée au serveur de Google à partir d’Android est montré en figure 10.

Figure 10 : Les identifiants d’appareil sont envoyés avec les informations de compte dans les requêtes de vérification Android.

46. Comme l’indiquent les zones pointées, Android envoie à Google, au cours du processus d’enregistrement, une variété d’identifiants permanents importants liés à l’appareil, y compris l’adresse MAC de l’appareil, l’IMEI /MEID et le numéro de série du dispositif. En outre, ces demandes contiennent également l’identifiant Gmail de l’utilisateur Android, ce qui permet à Google de relier les informations personnelles d’un utilisateur aux identifiants permanents des appareils Android.

47. À l’étape 2, le serveur de Google répond à la demande d’enregistrement. Ce message contient un identifiant de cadre de services Google (GSF ID)77 qui est similaire à l’« Android ID »78 (voir le tableau 1 pour les descriptions).

48. L’étape 3 implique un autre cas de communication où le même identifiant GSF (de l’étape 2) est envoyé à Google en même temps que le GAID. La figure 10 montre l’une de ces transmissions de données à android.clients.google.com/fdfe/bulkDetails?au=1.

49. Grâce aux trois échanges de données susmentionnés, Google reçoit les informations nécessaires pour connecter un GAID avec des identifiants d’appareil permanents ainsi que les identifiants de compte Google des utilisateurs.

50. Ces échanges de données interceptés avec les serveurs de Google à partir d’un téléphone Android montrent comment Google peut connecter les informations anonymisées collectées sur un appareil mobile Android via les outils DoubleClick, Analytics ou AdMob avec l’identité personnelle de l’utilisateur. Au cours de la collecte de données sur 24 heures à partir d’un téléphone Android sans mouvement ni activité, deux cas de communications d’enregistrement avec des serveurs Google ont été observés. Une analyse supplémentaire est toutefois nécessaire pour déterminer si un tel échange d’informations a lieu avec une certaine périodicité ou s’il est déclenché par des activités spécifiques sur les téléphones.

2) L’ID du cookie DoubleClick est relié aux informations personnelles de l’utilisateur sur le compte Google.

51. La section précédente expliquait comment Google peut désanonymiser l’identité de l’utilisateur via les données passives et anonymisées qu’il collecte à partir d’un appareil mobile Android. Cette section montre comment une telle désanonymisation peut également se produire sur un ordinateur de bureau/ordinateur portable.

52. Les données anonymisées sur les ordinateurs de bureau et portables sont collectées par l’intermédiaire d’identifiants basés sur des cookies (par ex. Cookie ID), qui sont typiquement générés par les produits de publicité et d’édition de Google (par ex. DoubleClick) et stockés sur le disque dur local de l’utilisateur. L’expérience présentée ci-dessous a permis d’évaluer si Google peut établir un lien entre ces identificateurs (et donc les renseignements qui y sont associés) et les informations personnelles d’un utilisateur.
Cette expérience comportait les étapes ordonnées suivantes :

  1. Ouverture d’une nouvelle session de navigation (Chrome ou autre) (pas de cookies enregistrés, par exemple navigation privée ou incognito) ;
  2. Visite d’un site Web tiers qui utilisait le réseau publicitaire DoubleClick de Google ;
  3. Visite du site Web d’un service Google largement utilisé (Gmail dans ce cas) ;
  4. Connexion à Gmail.

53. Au terme des étapes 1 et 2, dans le cadre du processus de chargement des pages, le serveur DoubleClick a reçu une demande lorsque l’utilisateur a visité pour la première fois le site Web tiers. Cette demande faisait partie d’une série de reqêtes comprenant le processus d’initialisation DoubleClick lancé par le site Web de l’éditeur, qui a conduit le navigateur Chrome à installer un cookie pour le domaine DoubleClick. Ce cookie est resté sur l’ordinateur de l’utilisateur jusqu’à son expiration ou jusqu’à ce que l’utilisateur efface manuellement les cookies via les paramètres du navigateur.

54. Ensuite, à l’étape 3, lorsque l’utilisateur visite Gmail, il est invité à se connecter avec ses identifiants Google. Google gère l’identité à l’aide d’une architecture single sign on (SSO) [NdT : authentification unique], dans laquelle les identifiants sont fournis à un service de compte (ici accounts.google.com) en échange d’un « jeton d’authentification », qui peut ensuite être présenté à d’autres services Google pour identifier les utilisateurs. À l’étape 4, lorsqu’un utilisateur accède à son compte Gmail, il se connecte effectivement à son compte Google, qui fournit alors à Gmail un jeton d’autorisation pour vérifier l’identité de l’utilisateur.79 Ce processus est décrit à la figure 24 de la section IX.E de l’annexe.

55. Dans la dernière étape de ce processus de connexion, une requête est envoyée au domaine DoubleClick. Cette requête contient à la fois le jeton d’authentification fourni par Google et le cookie de suivi défini lorsque l’utilisateur a visité le site web tiers à l’étape 2 (cette communication est indiquée à la figure 11). Cela permet à Google de relier les informations d’identification Google de l’utilisateur à un cookie DoubleClick. Par conséquent, si les utilisateurs n’effacent pas régulièrement les cookies de leur navigateur, leurs informations de navigation sur les pages Web de tiers qui utilisent les services DoubleClick pourraient être associées à leurs informations personnelles sur Google Account.

Figure 11 : La requête à DoubleClick.net inclut le jeton d’authentification Google et les cookies passés.

56. Il est donc établi à présent que Google recueille une grande variété de données sur les utilisateurs par l’intermédiaire de ses outils d’éditeur et d’annonceur, sans que l’utilisateur en ait une connaissance directe. Bien que ces données soient collectées à l’aide d’identifiants anonymes, Google a la possibilité de relier ces informations collectées aux identifiants personnels de l’utilisateur stockés sur son compte Google.

57. Il convient de souligner que la collecte passive de données d’utilisateurs de Google à partir de pages web tierces ne peut être empêchée à l’aide d’outils populaires de blocage de publicité80, car ces outils sont conçus principalement pour empêcher la présence de publicités pendant que les utilisateurs naviguent sur des pages web tierces81. La section suivante examine de plus près l’ampleur de cette collecte de données.




Les données que récolte Google – Ch.3

Voici déjà la traduction du troisième chapitre de Google Data Collection, l’étude élaborée par l’équipe du professeur Douglas C. Schmidt, spécialiste des systèmes logiciels, chercheur et enseignant à l’Université Vanderbilt. Si vous les avez manqués, retrouvez les chapitres précédents déjà publiés.

Il s’agit aujourd’hui de mesurer ce que les plateformes les plus populaires recueillent de nos smartphones

Traduction Framalang : Côme, goofy, Khrys, Mika, Piup. Remerciements particuliers à badumtss qui a contribué à la traduction de l’infographie.

La collecte des données par les plateformes Android et Chrome

11. Android et Chrome sont les plateformes clés de Google qui facilitent la collecte massive de données des utilisateurs en raison de leur grande portée et fréquence d’utilisation. En janvier 2018, Android détenait 53 % du marché américain des systèmes d’exploitation mobiles (iOS d’Apple en détenait 45 %)82 et, en mai 2017, il y avait plus de 2 milliards d’appareils Android actifs par mois dans le monde.83

12. Le navigateur Chrome de Google représentait plus de 60 % de l’utilisation mondiale de navigateurs Internet avec plus d’un milliard d’utilisateurs actifs par mois, comme l’indiquait le rapport Q4 10K de 201784. Les deux plateformes facilitent l’usage de contenus de Google et de tiers (p.ex. applications et sites tiers) et fournissent donc à Google un accès à un large éventail d’informations personnelles, d’activité web, et de localisation.

A. Collecte d’informations personnelles et de données d’activité

13. Pour télécharger et utiliser des applications depuis le Google Play Store sur un appareil Android, un utilisateur doit posséder (ou créer) un compte Google, qui devient une passerelle clé par laquelle Google collecte ses informations personnelles, ce qui comporte son nom d’utilisateur, son adresse de messagerie et son numéro de téléphone. Si un utilisateur s’inscrit à des services comme Google Pay85, Android collecte également les données de la carte bancaire, le code postal et la date de naissance de l’utilisateur. Toutes ces données font alors partie des informations personnelles de l’utilisateur associées à son compte Google.

14. Alors que Chrome n’oblige pas le partage d’informations personnelles supplémentaires recueillies auprès des utilisateurs, il a la possibilité de récupérer de telles informations. Par exemple, Chrome collecte toute une gamme d’informations personnelles avec la fonctionnalité de remplissage automatique des formulaires, qui incluent typiquement le nom d’utilisateur, l’adresse, le numéro de téléphone, l’identifiant de connexion et les mots de passe.86 Chrome stocke les informations saisies dans les formulaires sur le disque dur de l’utilisateur. Cependant, si l’utilisateur se connecte à Chrome avec un compte Google et active la fonctionnalité de synchronisation, ces informations sont envoyées et stockées sur les serveurs de Google. Chrome pourrait également apprendre la ou les langues que parle la personne avec sa fonctionnalité de traduction, activée par défaut.87

15. En plus des données personnelles, Chrome et Android envoient tous deux à Google des informations concernant les activités de navigation et l’emploi d’applications mobiles, respectivement. Chaque visite de page internet est automatiquement traquée et collectée par Google si l’utilisateur a un compte Chrome. Chrome collecte également son historique de navigation, ses mots de passe, les permissions particulières selon les sites web, les cookies, l’historique de téléchargement et les données relatives aux extensions.88

16. Android envoie des mises à jour régulières aux serveurs de Google, ce qui comprend le type d’appareil, le nom de l’opérateur, les rapports de bug et des informations sur les applications installées89. Il avertit également Google chaque fois qu’une application est ouverte sur le téléphone (ex. Google sait quand un utilisateur d’Android ouvre son application Uber).

B. Collecte des données de localisation de l’utilisateur

17. Android et Chrome collectent méticuleusement la localisation et les mouvements de l’utilisateur en utilisant une variété de sources, représentées sur la figure 3. Par exemple, un accès à la « localisation approximative » peut être réalisé en utilisant les coordonnées GPS sur un téléphone Android ou avec l’adresse IP sur un ordinateur. La précision de la localisation peut être améliorée (« localisation précise ») avec l’usage des identifiants des antennes cellulaires environnantes ou en scannant les BSSID (’’Basic Service Set IDentifiers’’), identifiants assignés de manière unique aux puces radio des points d’accès Wi-Fi présents aux alentours90. Les téléphones Android peuvent aussi utiliser les informations des balises Bluetooth enregistrées dans l’API Proximity Beacon de Google91. Ces balises non seulement fournissent les coordonnées de géolocalisation de l’utilisateur, mais pourraient aussi indiquer à quel étage exact il se trouve dans un immeuble.92

schéma représentatt les différents moyens (wifi, bluetooth) de localiser les données d’un utilisateur de smartphone
Figure 3 : Android et Chrome utilisent diverses manières de localiser l’utilisateur d’un téléphone.

 

18. Il est difficile pour un utilisateur de téléphone Android de refuser le traçage de sa localisation. Par exemple, sur un appareil Android, même si un utilisateur désactive le Wi-Fi, la localisation est toujours suivie par son signal Wi-Fi. Pour éviter un tel traçage, le scan Wi-Fi doit être explicitement désactivé par une autre action de l’utilisateur, comme montré sur la figure 4.

2 copies d’écran de paramètres d’android pour montrer que le wifi est toujours sacnné même s’il est désactivé
Figure 4 : Android collecte des données même si le Wi-Fi est éteint par l’utilisateur

 

19. L’omniprésence de points d’accès Wi-Fi a rendu le traçage de localisation assez fréquent. Par exemple, durant une courte promenade de 15 minutes autour d’une résidence, un appareil Android a envoyé neuf requêtes de localisation à Google. Les requêtes contenaient au total environ 100 BSSID de points d’accès Wi-Fi publics et privés.

20. Google peut vérifier avec un haut degré de confiance si un utilisateur est immobile, s’il marche, court, fait du vélo, ou voyage en train ou en car. Il y parvient grâce au traçage à intervalles de temps réguliers de la localisation d’un utilisateur Android, combiné avec les données des capteurs embarqués (comme l’accéléromètre) sur les téléphones mobiles. La figure 5 montre un exemple de telles données communiquées aux serveurs de Google pendant que l’utilisateur marchait.

code renvoyé aux serveurs : la localisation d’un utilisateur
Figure 5 : capture d’écran d’un envoi de localisation d’utilisateur à Google.

 

C. Une évaluation de la collecte passive de données par Google via Android et Chrome

21. Les données actives que les plateformes Android ou Chrome collectent et envoient à Google à la suite des activités des utilisateurs sur ces plateformes peuvent être évaluées à l’aide des outils MyActivity et Takeout. Les données passives recueillies par ces plateformes, qui vont au-delà des données de localisation et qui restent relativement méconnues des utilisateurs, présentent cependant un intérêt potentiellement plus grand. Afin d’évaluer plus en détail le type et la fréquence de cette collecte, une expérience a été menée pour surveiller les données relatives au trafic envoyées à Google par les téléphones mobiles (Android et iPhone) en utilisant la méthode décrite dans la section IX.D de l’annexe. À titre de comparaison, cette expérience comprenait également l’analyse des données envoyées à Apple via un appareil iPhone.

22. Pour des raisons de simplicité, les téléphones sont restés stationnaires, sans aucune interaction avec l’utilisateur. Sur le téléphone Android, une seule session de navigateur Chrome restait active en arrière-plan, tandis que sur l’iPhone, le navigateur Safari était utilisé. Cette configuration a permis une analyse systématique de la collecte de fond que Google effectue uniquement via Android et Chrome, ainsi que de la collecte qui se produit en l’absence de ceux-ci (c’est-à-dire à partir d’un appareil iPhone), sans aucune demande de collecte supplémentaire générée par d’autres produits et applications (par exemple YouTube, Gmail ou utilisation d’applications).

23. La figure 6 présente un résumé des résultats obtenus dans le cadre de cette expérience. L’axe des abscisses indique le nombre de fois où les téléphones ont communiqué avec les serveurs Google (ou Apple), tandis que l’axe des ordonnées indique le type de téléphone (Android ou iPhone) et le type de domaine de serveur (Google ou Apple) avec lequel les paquets de données ont été échangés par les téléphones. La légende en couleur décrit la catégorisation générale du type de demandes de données identifiées par l’adresse de domaine du serveur. Une liste complète des adresses de domaine appartenant à chaque catégorie figure dans le tableau 5 de la section IX.D de l’annexe.

24. Au cours d’une période de 24 heures, l’appareil Android a communiqué environ 900 échantillons de données à une série de terminaux de serveur Google. Parmi ceux-ci, environ 35 % (soit environ 14 par heure) étaient liés à la localisation. Les domaines publicitaires de Google n’ont reçu que 3 % du trafic, ce qui est principalement dû au fait que le navigateur mobile n’a pas été utilisé activement pendant la période de collecte. Le reste (62 %) des communications avec les domaines de serveurs Google se répartissaient grosso modo entre les demandes adressées au magasin d’applications Google Play, les téléchargements par Android de données relatives aux périphériques (tels que les rapports de crash et les autorisations de périphériques), et d’autres données — principalement de la catégorie des appels et actualisations de fond des services Google.

infographie exposant les proportions de trafic envoyé par les appareils divers vers les serveurs de Google
Figure 6 : Données sur le trafic envoyées par les appareils Andoid et les iPhones en veille.

 

25. La figure 6 montre que l’appareil iPhone communiquait avec les domaines Google à une fréquence inférieure de plus d’un ordre de grandeur (50 fois) à celle de l’appareil Android, et que Google n’a recueilli aucun donnée de localisation utilisateur pendant la période d’expérience de 24 heures via iPhone. Ce résultat souligne le fait que les plateformes Android et Chrome jouent un rôle important dans la collecte de données de Google.

26. De plus, les communications de l’appareil iPhone avec les serveurs d’Apple étaient 10 fois moins fréquentes que les communications de l’appareil Android avec Google. Les données de localisation ne représentaient qu’une très faible fraction (1 %) des données nettes envoyées aux serveurs Apple à partir de l’iPhone, Apple recevant en moyenne une fois par jour des communications liées à la localisation.

27. En termes d’amplitude, les téléphones Android communiquaient 4,4 Mo de données par jour (130 Mo par mois) avec les serveurs Google, soit 6 fois plus que ce que les serveurs Google communiquaient à travers l’appareil iPhone.

28. Pour rappel, cette expérience a été réalisée à l’aide d’un téléphone stationnaire, sans interaction avec l’utilisateur. Lorsqu’un utilisateur commence à bouger et à interagir avec son téléphone, la fréquence des communications avec les serveurs de Google augmente considérablement. La section V du présent rapport résume les résultats d’une telle expérience.